Unreal OpenAI API 1.0.0
Public Attributes | List of all members
FCompletion Struct Reference

Public Attributes

FString Model
 
FString Prompt
 
FString Suffix
 
int32 Max_Tokens {16}
 
float Temperature {1.0f}
 
float Top_P {1.0f}
 
int32 N {1}
 
bool Stream {false}
 
int32 Logprobs {0}
 
bool Echo {false}
 
float Presence_Penalty {0.0f}
 
float Frequency_Penalty {0.0f}
 
int32 Best_Of {1}
 
TMap< FString, int32 > Logit_Bias
 
FString User
 

Member Data Documentation

◆ Best_Of

int32 FCompletion::Best_Of {1}

Generates best_of completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed. When used with n, best_of controls the number of candidate completions and n specifies how many to return – best_of must be greater than n.

Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens and stop.

◆ Echo

bool FCompletion::Echo {false}

Echo back the prompt in addition to the completion.

◆ Frequency_Penalty

float FCompletion::Frequency_Penalty {0.0f}

Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.

See more information about frequency and presence penalties: https://platform.openai.com/docs/api-reference/parameter-details

◆ Logit_Bias

TMap<FString, int32> FCompletion::Logit_Bias

Modify the likelihood of specified tokens appearing in the completion. Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this tokenizer tool (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.

As an example, you can pass {"50256": -100} to prevent the <|endoftext|> token from being generated.

◆ Logprobs

int32 FCompletion::Logprobs {0}

Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens. For example, if logprobs is 5, the API will return a list of the 5 most likely tokens. The API will always return the logprob of the sampled token, so there may be up to logprobs+1 elements in the response. The maximum value for logprobs is 5. If you need more than this, please contact us through our Help center and describe your use case.

◆ Max_Tokens

int32 FCompletion::Max_Tokens {16}

The maximum number of tokens to generate in the chat completion. The total length of input tokens and generated tokens is limited by the model's context length.

◆ Model

FString FCompletion::Model

ID of the model to use. You can use the List models API to see all of your available models, or see our Model overview for descriptions of them.

◆ N

int32 FCompletion::N {1}

How many completions to generate for each prompt. Note: Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for max_tokens and stop.

◆ Presence_Penalty

float FCompletion::Presence_Penalty {0.0f}

Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.

See more information about frequency and presence penalties: https://platform.openai.com/docs/api-reference/parameter-details

◆ Prompt

FString FCompletion::Prompt

The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.

Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.

◆ Stream

bool FCompletion::Stream {false}

Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.

◆ Suffix

FString FCompletion::Suffix

The suffix that comes after a completion of inserted text.

◆ Temperature

float FCompletion::Temperature {1.0f}

What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or top_p but not both.

◆ Top_P

float FCompletion::Top_P {1.0f}

An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both.

◆ User

FString FCompletion::User

A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.


The documentation for this struct was generated from the following file: